Want to hire this expert for a project? Request a quote for free.
Profile Details
Create Project
USD 21 /hr
Hire Dr. Usman B.
Nigeria
USD 21 /hr
A detailed-oriented Data Analyst, Data Scientist, Mathematician (Functional Analyst) and Statistician.
Profile Summary
Subject Matter Expertise
Services
Writing
Technical Writing,
Audio Transcription,
General Proofreading & Editing
Research
Technology Scouting,
Scientific and Technical Research,
Secondary Data Collection
Consulting
Scientific and Technical Consulting
Data & AI
Algorithm Design-ML,
Data Visualization,
Big Data Analytics,
Data Cleaning,
Data Processing
Work Experience
ASSISTANT PROFESSOR
African University of Science and Technology, Abuja
May 2019 - Present
Senior Lecturer
Al Qalam University
January 2017 - December 2019
Senior Lecturer
Federal University Dutsin-ma
July 2012 - April 2019
lecturer
Nigerian Turkish Nile University
January 2012 - December 2012
Education
Ph.D. Mathematics
African University of Science and Technology
January 2012 - July 2015
M.Sc. Mathematics
African University of Science and Technology
July 2010 - December 2012
B.Sc. Mathematics
Bayero University Kano - Nigeria
September 2004 - July 2009
Certifications
Publications
JOURNAL ARTICLE
Bello, A.U., Nnakwe, M.O.(2022). An asynchronous inertial algorithm for solving convex feasibility problems with strict pseudo-contractions in Hilbert spaces . Proceedings of the Edinburgh Mathematical Society. 65. (1). p. 229-243.
Okeke, C.C., Bello, A.U., Oyewole, O.K.(2022). A strong convergence algorithm for solving pseudomonotone variational inequalities with a single projection . Journal of Analysis. 30. (3). p. 965-987.
Bello, A.U., Okeke, C.C., Isyaku, M., Omojola, M.T.(2022). Forward-reflected-backward splitting method without cocoercivity for the sum of maximal monotone operators in Banach spaces . Optimization.
Okeke, C.C., Bello, A.U., Jolaoso, L.O., Ukandu, K.C.(2022). INERTIAL METHOD FOR SPLIT NULL POINT PROBLEMS WITH PSEUDOMONOTONE VARIATIONAL INEQUALITY PROBLEMS . Numerical Algebra, Control and Optimization. 12. (4). p. 815-836.
Bello, A.U., Uba, M.O., Omojola, M.T., Onyido, M.A., Udeani, C.I.(2022). NEW METHOD FOR COMPUTING ZEROS OF MONOTONE MAPS IN LEBESGUE SPACES WITH APPLICATIONS TO INTEGRAL EQUATIONS, FIXED POINTS, OPTIMIZATION, AND VARIATIONAL INEQUALITY PROBLEMS . Acta Mathematica Universitatis Comenianae. 91. (3). p. 259-279.
Bello, A.U., Yusuf, H., Djitte, N.(2022). Single-step algorithm for variational inequality problems in 2-uniformly convex banach spaces . Rendiconti del Circolo Matematico di Palermo.
Okereke, L.C., Bello, A.U., Onwukwe, E.A.(2022). Toward Precision Radiotherapy: A Nonlinear Optimization Framework and an Accelerated Machine Learning Algorithm for the Deconvolution of Tumor-Infiltrating Immune Cells . Cells. 11. (22).
Bello, A.U., Chidume, C.E., Alka, M.(2022). Self-adaptive forward–backward splitting algorithm for the sum of two monotone operators in Banach spaces . Fixed Point Theory and Algorithms for Sciences and Engineering. 2022. (1).
Bello, A.U., Nnakwe, M.O.(2021). An algorithm for approximating a common solution of some nonlinear problems in Banach spaces with an application . Advances in Difference Equations. 2021. (1).
Bello, A.U., Omojola, M.T., Yahaya, J.(2021). An inertial-type algorithm for approximation of solutions of Hammerstein integral inclusions in Hilbert spaces . Fixed Point Theory and Algorithms for Sciences and Engineering. 2021. (1).
Bello, A.U., Omojola, M.T., Nnakwe, M.O.(2021). Two methods for solving split common fixed point problems of strict pseudo-contractve mappings in hilbert spaces with applications . Applied Set-Valued Analysis and Optimization. 3. (1). p. 75-93.
Chidume, C.E., Bello, A.U.(2020). An Iterative Algorithm for Approximating Solutions of Hammerstein Equations with Bounded Generalized Phi-Monotone Mappings . Numerical Functional Analysis and Optimization. 41. (4). p. 442-461.
Uba, M.O., Bello, A.U., Chidume, C.E.(2019). Approximation of solutions of hammerstein equations with bounded monotone maps in Lebesgue spaces . Panamerican Mathematical Journal. 29. (2). p. 34-53.
Chidume, C.E., Bello, A.U.(2017). An iterative algorithm for approximating solutions of Hammerstein equations with monotone maps in Banach spaces . Applied Mathematics and Computation. 313. p. 408-417.
Chidume, C.E., Chidume, C.O., Bello, A.U.(2016). An algorithm for computing zeros of generalized phi-strongly monotone and bounded maps in classical Banach spaces . Optimization. 65. (4). p. 827-839.
Chidume, C.E., Okpala, M.E., Bello, A.U., Ndambomve, P.(2015). Convergence theorems for finite family of a general class of multi-valued strictly pseudo-contractive mappings . Fixed Point Theory and Applications. 2015. (1).
Chidume, C.E., Bello, A.U., Usman, B.(2015). Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical banach spaces . SpringerPlus. 4. (1).
Chidume, C.E., Bello, A.U., Onyido, M.A.(2015). Convergence theorem for a countable family of multi-valued strictly pseudo-contractive mappings in hilbert spaces . International Journal of Mathematical Analysis. 9. (25-28). p. 1331-1340.
Chidume, C.E., Bello, A.U., Okpala, M.E., Ndambomve, P.(2015). Strong convergence theorem for fixed points of nearly uniformly L-Lipschitzian asymptotically generalized Φ -hemicontractive mappings . International Journal of Mathematical Analysis. 9. (49-52). p. 2555-2569.
Chidume, C.E., Ndambomve, P., Bello, A.U., Okpala, M.E.(2015). The multiple-sets split equality fixed point problem for countable families of multi-valued demi-contractive mappings . International Journal of Mathematical Analysis. 9. (9-12). p. 453-469.
Chidume, C.E., Bello, A.U., Ndambomve, P.(2014). Strong and Δ -convergence theorems for common fixed points of a finite family of multivalued demicontractive mappings in CAT (0) spaces . Abstract and Applied Analysis. 2014.
OTHER
Bello, A.U., Uba, M.O., Omojola, M.T., Onyido, M.A., Udeani, C.I.(2021). NEW METHOD FOR COMPUTING ZEROS OF MONOTONE MAPS IN LEBESGUE SPACES WITH APPLICATIONS TO INTEGRAL EQUATIONS, FIXED POINTS, OPTIMIZATION, AND VARIATIONAL INEQUALITY PROBLEMS . arXiv.