Cómo trabajan los científicos para encontrar soluciones a la pandemia de COVID-19

0

Consultor de biología estructural en Kolabtree Jennifer Huen escribe sobre cómo los científicos de todo el mundo están trabajando para encontrar soluciones a la COVID-19 pandemia. 

Mientras escribo estas palabras, el personal médico de todo el mundo está trabajando a pleno rendimiento para tratar a los pacientes infectados, los científicos se apresuran a realizar experimentos para desarrollar una vacuna adecuada contra el COVID-19 y los voluntarios entregan alimentos y suministros a las personas vulnerables. Estos son sólo algunos de los numerosos actos desinteresados que la gente está llevando a cabo para ayudar a todos los que les rodean.

Nuestra experiencia colectiva durante la epidemia de SRAS en 2002-2003 ha llevado a rápidas acciones y cambios de comportamiento por parte del gobierno y la población en general para contener la propagación del virus y acelerar la investigación urgente [1]. Ya se han publicado más de mil artículos primarios y de revisión sobre el SRAS-CoV2 desde su primera aparición en la opinión pública en diciembre del año pasado. Los proveedores de laboratorios están agilizando los pedidos de reactivos relacionados con el COVID-19 y los medios de comunicación están proporcionando acceso gratuito a los artículos sobre el COVID-19, como los de la revista Science (https://www.sciencemag.org/). El Banco de Datos de Proteínas, un recurso de estructuras moleculares de alta resolución resueltas por la comunidad científica, ha visto depositadas más de cien estructuras de proteínas, la primera a principios de febrero [2]. Estas investigaciones, así como los trabajos realizados en el pasado sobre los coronavirus, han dado lugar a la realización de ensayos clínicos en todo el mundo [3-5].  

Gracias a la gran cantidad de datos que se han puesto a disposición del público, he generado la siguiente imagen para representar una instantánea de cómo el SARS-CoV2 infecta a su huésped. Las moléculas de proteínas ilustradas en esta imagen se obtuvieron a partir de los datos de la estructura molecular proporcionados por varios grupos de investigación [6-8]. Uno de estos grupos ha proporcionado las estructuras de todas las proteínas del SARS-CoV2 y sus interacciones con las proteínas humanas objetivo (http://korkinlab.org/wuhan).

Durante la infección por el SARS-CoV, las células del huésped engullen la partícula del virus o la membrana del virus se fusiona directamente con la membrana del huésped [9,10]. Estas dos acciones son mediadas primero por la proteína viral de la espiga que se une a la enzima que aparece en la superficie del huésped, la enzima convertidora de angiotensina 2, ACE2. Los científicos han demostrado desde febrero que la ACE2 es la enzima objetivo del SARS-CoV2 [11-14]. Una vez que la espiga del virus se une a la ACE2, unas enzimas del huésped llamadas proteasas cortan una región específica de la espiga viral, permitiendo que la espiga se reorganice. Esta acción da paso a que parte de la espiga se inserte en la membrana del huésped, permitiendo que la membrana del virus se fusione con ella y extruya su genoma dentro del huésped [15,16]. El virus también puede entrar en el hospedador al ser engullido en vesículas, donde puede depositar su genoma dentro del hospedador [17,12]. Si se interfiere en cualquiera de los pasos de entrada del SARS-CoV2, se puede detener la infección. Las estructuras moleculares de las proteínas víricas desempeñan un papel importante en la investigación de fármacos, ya que es como tener un mapa de un territorio desconocido, que revela las regiones clave de la molécula objetivo. 

Este trabajo es sólo uno de los cientos de artículos que se aceleraron para su publicación en revistas científicas, pasando por encima del proceso de revisión por pares, con el fin de llegar al público más rápidamente. La cantidad de progresos que hemos hecho para encontrar soluciones a la COVID-19 sólo podría haber sido posible con la ayuda de muchas personas ingeniosas e innovadoras de todo el mundo. Para ver cómo puedes contribuir, consulta la lista de oportunidades que aparece a continuación.

Siempre he apreciado las elegantes estructuras y funciones de las moléculas biológicas. Ahora, aprecio enormemente la rapidez con la que los científicos y el público en general de todo el mundo están dedicando sus energías a un objetivo común. Serán nuestros esfuerzos de colaboración los que nos sacarán de esta pandemia.

Enlaces a recursos de voluntariado, innovación y donación:

Las actividades de voluntariado pueden consistir en ayudar a realizar diagnósticos de COVID-19, comprobar los hechos y hacer frente a la desinformación, entregar reactivos médicos o donar equipos de protección personal. Esta lista no es exhaustiva y contiene oportunidades de voluntariado principalmente en la zona de Toronto, Canadá. 

¿Necesita consultar a un experto para que le ayude a investigar las posibles soluciones a la pandemia de COVID-19? Obtenga ayuda para la comprobación de datos, la redacción y la investigación relacionadas con el coronavirus. Ponte en contacto con científicos cualificados en Kolabtree. VER EXPERTOS EN CORONAVIRUS

Referencias:

  1. Amenazas, I.o.M.U.F.o.M., Aprender del SARS: Preparándose para el próximo brote de la enfermedad: Resumen del taller. 2004.
  2. Jin, Z., y otros, Estructura de Mpro del virus COVID-19 y descubrimiento de sus inhibidores. bioRxiv, 2020: p. 2020.02.26.964882.
  3. Jiang, S., No hay que apresurarse a desplegar las vacunas y los fármacos de COVID-19 sin suficientes garantías de seguridad, en Naturaleza. 2020, Springer Nature Limited. p. 321.
  4. Comienza el ensayo clínico del NIH de la vacuna en investigación contra la COVID-19. 2020, Institutos Nacionales de Salud.
  5. Discurso de apertura de la Directora General de la OMS en la sesión informativa para los medios de comunicación sobre COVID-19 - 27 de marzo de 2020. 2020, Organización Mundial de la Salud.
  6. Cui, H., y otros, La genómica estructural y la interactómica del nuevo coronavirus de Wuhan 2019, 2019-nCoV, indican regiones funcionales evolutivamente conservadas de las proteínas virales. bioRxiv, 2020: p. 2020.02.10.942136.
  7. Yan, R., y otros, Base estructural para el reconocimiento del SARS-CoV-2 por la ACE2 humana de longitud completa. Ciencia, 2020. 367(6485): p. 1444-1448.
  8. Song, W., y otros, Estructura crio-EM de la glicoproteína de espiga del coronavirus del SARS en complejo con su receptor de la célula huésped ACE2. PLoS Pathog, 2018. 14(8): p. e1007236.
  9. Groneberg, D.A., R. Hilgenfeld y P. Zabel, Mecanismos moleculares del síndrome respiratorio agudo severo (SARS). Respir Res, 2005. 6: p. 8.
  10. Yang, Z.Y., y otros, La entrada dependiente del pH del coronavirus del síndrome respiratorio agudo severo está mediada por la glicoproteína spike y potenciada por la transferencia de células dendríticas a través de DC-SIGN. J Virol, 2004. 78(11): p. 5642-50.
  11. Zhou, P., y otros, Un brote de neumonía asociado a un nuevo coronavirus de probable origen murciélago. Naturaleza, 2020. 579(7798): p. 270-273.
  12. Ou, X., y otros, Caracterización de la glicoproteína de espiga del SARS-CoV-2 en la entrada del virus y su reactividad cruzada inmunológica con el SARS-CoV. Nat Commun, 2020. 11(1): p. 1620.
  13. Xiaowei Li, y otros, Patogénesis inmunológica molecular y diagnóstico de COVID-19. Journal of Pharmaceutical Analysis, 2020.
  14. Meng, T., y otros, La secuencia de inserción en el SARS-CoV-2 mejora la escisión de la proteína de la espiga por el TMPRSS. bioRxiv, 2020: p. 2020.02.08.926006.
  15. Belouzard, S., V.C. Chu y G.R. Whittaker, Activación de la proteína de la espiga del coronavirus del SARS a través de la escisión proteolítica secuencial en dos sitios distintos. Proc Natl Acad Sci U S A, 2009. 106(14): p. 5871-6.
  16. Li, F., Estructura, función y evolución de las proteínas de espiga de los coronavirus. Annu Rev Virol, 2016. 3(1): p. 237-261.
  17. Inoue, Y., y otros, Entrada dependiente de clatrina del coronavirus del síndrome respiratorio agudo severo en las células diana que expresan ACE2 con la cola citoplasmática eliminada. J Virol, 2007. 81(16): p. 8722-9.

 


Kolabtree ayuda a las empresas de todo el mundo a contratar expertos bajo demanda. Nuestros freelancers han ayudado a las empresas a publicar artículos de investigación, desarrollar productos, analizar datos y mucho más. Sólo se necesita un minuto para decirnos lo que necesita hacer y obtener presupuestos de expertos de forma gratuita.


Comparte.

Sobre el autor

Jennifer Huen se doctoró en bioquímica en la Universidad de Toronto y ha trabajado tanto en el mundo académico como en empresas de biotecnología. Actualmente dirige un servicio de investigación computacional centrado en el desarrollo de terapias biológicas en Huen Structure Bio, https://www.huenstructurebio.com. Se puede contactar con ella en jenhuen@huenstructurebio.com.

Dejar una respuesta

Expertos autónomos de confianza, listos para ayudarle con su proyecto


La mayor plataforma mundial de científicos autónomos  

No gracias, no estoy buscando contratar en este momento