level-one heading

Why Kolabtree
Getting started is quick and easy. No upfront fees
It’s free to request a service and invite bids from experts
Discuss requirements with the expert in detail before accepting statement of work from Kolabtree
Collaborate with the expert directly to get your work done the right way
Fund project when you hire the expert, but approve the deliverables only once work is done
Want to hire this expert for a project? Request a quote for free.
Profile Details
Create Project
★★★★★
☆☆☆☆☆
USD 350 /hr
Hire Dr. Shaowu P.
United States
USD 350 /hr

Physics-Informed Machine Learning / AI, Fluid Dynamics / Data-driven modeling of dynamical systems

Profile Summary
Subject Matter Expertise
Services
Research Scientific and Technical Research
Consulting Scientific and Technical Consulting
Data & AI Predictive Modeling, Statistical Analysis
Product Development Formulation
Work Experience

Assistant Professor

Rensselaer Polytechnic Institute

August 2022 - Present

Postdoc

University of Washington

January 2021 - August 2022

Graduate Student Research Assistant

University of Michigan

August 2016 - December 2020

Application engineer intern

Exa Corporation

January 2016 - July 2016

Education

Ph.D. (Aerospace Engineering)

University of Michigan

September 2016 - April 2021

M.S.E. (Mechanical Engineering)

University of Michigan

- December 2015

B.E. (School of Aeronautics and Astronautics)

Beihang University

September 2009 - June 2013

B.S. (School of Mathematics)

Beihang University

August 2010 - April 2013

Certifications
  • Graduate Certificate in Computational Science and Engineering

    UMICH MICDE

    October 2016 - Present

Publications
JOURNAL ARTICLE
Shaowu Pan, Shahriar Akbar Sakib (2025). Learning Noise-Robust Stable Koopman Operator for Control With Hankel DMD . IEEE Transactions on Control Systems Technology.
Shaowu Pan, Karthik Duraisamy (2024). On the lifting and reconstruction of nonlinear systems with multiple invariant sets . Nonlinear Dynamics.
Shaowu Pan, Byoungchan Jang, Alan A. Kaptanoglu, Rahul Gaur, Matt Landreman, William Dorland (2024). Erratum: “Grad–Shafranov equilibria via data-free physics informed neural networks” [Phys. Plasmas 31, 032510 (2024)] . Physics of Plasmas.
Shaowu Pan, Byoungchan Jang, Alan A. Kaptanoglu, Rahul Gaur, Matt Landreman, William Dorland (2024). Grad–Shafranov equilibria via data-free physics informed neural networks . Physics of Plasmas.
Shaowu Pan, Eurika Kaiser, Brian M. de Silva, J. Nathan Kutz, Steven L. Brunton (2024). PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator . Journal of Open Source Software.
Shaowu Pan, Steven L. Brunton, J. Nathan Kutz(2023). Neural Implicit Flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data . Journal of Machine Learning Research. 24. (41). p. 1--60.
Shaowu Pan, Qi Gao, Hongping Wang, Runjie Wei, Jinjun Wang (2021). Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning . Advances in Aerodynamics.
Shaowu Pan, Nicholas Arnold-Medabalimi, Karthik Duraisamy(2021). Sparsity-promoting algorithms for the discovery of informative Koopman-invariant subspaces . Journal of Fluid Mechanics. 917. Cambridge University Press ({CUP})
Pan, S., Arnold-Medabalimi, N., Duraisamy, K.(2021). Sparsity-promoting algorithms for the discovery of informative Koopman-invariant subspaces . Journal of Fluid Mechanics. 917.
Pan, S., Arnold-Medabalimi, N., Duraisamy, K.(2021). Sparsity-promoting algorithms for the discovery of informative Koopman-invariant subspaces . Journal of Fluid Mechanics. 917.
Ji, W., Qiu, W., Shi, Z., Pan, S., Deng, S.(2021). Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics . Journal of Physical Chemistry A. 125. (36). p. 8098-8106.
Gao, Q., Pan, S., Wang, H., Wei, R., Wang, J.(2021). Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning . Advances in Aerodynamics. 3. (1).
Shaowu Pan, Karthik Duraisamy(2020). On the structure of time-delay embedding in linear models of non-linear dynamical systems . Chaos: An Interdisciplinary Journal of Nonlinear Science. 30. (7). p. 073135. {AIP} Publishing
Shaowu Pan, Luning Sun, Han Gao, Jian-Xun Wang(2020). Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data . Computer Methods in Applied Mechanics and Engineering. 361. p. 112732. Elsevier {BV}
Shaowu Pan, Karthik Duraisamy(2020). Physics-Informed Probabilistic Learning of Linear Embeddings of Nonlinear Dynamics with Guaranteed Stability . SIAM Journal on Applied Dynamical Systems. 19. (1). p. 480--509. Society for Industrial {\&} Applied Mathematics ({SIAM})
Sun, L., Gao, H., Pan, S., Wang, J.-X.(2020). Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data . Computer Methods in Applied Mechanics and Engineering. 361.
Pan, S., Duraisamy, K.(2020). Physics-informed probabilistic learning of linear embeddings of nonlinear dynamics with guaranteed stability . SIAM Journal on Applied Dynamical Systems. 19. (1). p. 480-509.
Pan, Shaowu, Bhatnagar, Saakaar, Afshar, Yaser, Duraisamy, Karthik, Kaushik, Shailendra (2019). Prediction of aerodynamic flow fields using convolutional neural networks . Computational Mechanics.
Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., Kaushik, S.(2019). Prediction of aerodynamic flow fields using convolutional neural networks . Computational Mechanics. 64. (2). p. 525-545.
Shaowu Pan, Karthik Duraisamy(2018). Data-Driven Discovery of Closure Models . SIAM Journal on Applied Dynamical Systems. 17. (4). p. 2381--2413. Society for Industrial {\&} Applied Mathematics ({SIAM})
Shaowu Pan, Karthik Duraisamy(2018). Data-Driven Discovery of Closure Models . SIAM Journal on Applied Dynamical Systems. 17. (4). p. 2381--2413. Society for Industrial {\&} Applied Mathematics ({SIAM})
Shaowu Pan, Karthik Duraisamy, Francisco Chinesta (2018). Long‐Time Predictive Modeling of Nonlinear Dynamical Systems Using Neural Networks . Complexity.
Pan, Shaowu, Duraisamy, Karthik (2018). Data-Driven Discovery of Closure Models . SIAM Journal on Applied Dynamical Systems.
Pan, S., Duraisamy, K.(2018). Data-driven discovery of closure models . SIAM Journal on Applied Dynamical Systems. 17. (4). p. 2381-2413.
Shaowu Pan, Eric Johnsen(2017). The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence . Journal of Fluid Mechanics. 833. p. 717--744. Cambridge University Press ({CUP})
Pan, Shaowu, Johnsen, Eric (2017). The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence . Journal of Fluid Mechanics.
Pan, S., Johnsen, E.(2017). The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence . Journal of Fluid Mechanics. 833. p. 717-744.
Shaowu Pan, Zhenxun Gao, Chongwen Jiang, Chun-Hian Lee(2015). Combustion Heat-Release Effects on Supersonic Compressible Turbulent Boundary Layers . AIAA Journal. 53. (7). p. 1949--1968. American Institute of Aeronautics and Astronautics ({AIAA})
Pan, Shaowu, Gao, Zhenxun, Jiang, Chongwen, Lee, Chun-Hian (2015). Combustion Heat-Release Effects on Supersonic Compressible Turbulent Boundary Layers . AIAA Journal.
Gao, Z., Jiang, C., Pan, S., Lee, C.-H.(2015). Combustion heat-release effects on supersonic compressible turbulent boundary layers . AIAA Journal. 53. (7). p. 1949-1968.
OTHER
Ji, W., Qiu, W., Shi, Z., Pan, S., Deng, S.(2020). Stiff-PINN: Physics-informed neural network for stiff chemical kinetics . arXiv.
Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., Kaushik, S.(2019). Prediction of Aerodynamic Flow Fields Using Convolutional Neural Networks . arXiv.
Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., Kaushik, S.(2019). Prediction of Aerodynamic Flow Fields Using Convolutional Neural Networks . arXiv.
Pan, S., Duraisamy, K.(2018). Data-driven discovery of closure models . arXiv.
CONFERENCE PAPER
Ji, W., Qiu, W., Shi, Z., Pan, S., Deng, S.(2021). Stiff-PINN: Physics-informed neural network for stiff chemical kinetics . CEUR Workshop Proceedings. 2964.
Ji, W., Qiu, W., Shi, Z., Pan, S., Deng, S.(2021). Stiff-PINN: Physics-informed neural network for stiff chemical kinetics . CEUR Workshop Proceedings. 2964.
Anand Pratap Singh, Karthikeyan Duraisamy, Ze Jia Zhang(2017). Augmentation of Turbulence Models Using Field Inversion and Machine Learning . 55th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics
Shaowu Pan, Anand Pratap Singh, Karthikeyan Duraisamy(2017). Characterizing and Improving Predictive Accuracy in Shock-Turbulent Boundary Layer Interactions Using Data-driven Models . 55th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics
Singh, A.P., Pan, S., Duraisamy, K.(2017). Characterizing and improving predictive accuracy in shock-turbulent boundary layer interactions using data-driven models . AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting.
Duraisamy, K., Singh, A.P., Pan, S.(2017). Augmentation of turbulence models using field inversion and machine learning . AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting.
Mann, A., Kim, M.-S., Pan, S., Neuhierl, B., Pérot, F., Ocampo, J.A.(2016). Towards engine-mounted exhaust and muffler aeroacoustics predictions using a lattice boltzmann based method . FISITA 2016 World Automotive Congress - Proceedings.
Shaowu Pan, Ning Zhou, Yuanhao Wu, Wenbin Han(2014). An extended CFD model to predict the pumping curve in low pressure plasma etch chamber . {AIP} Publishing {LLC}
Shaowu Pan and Zhenxun Gao and Chunhian Lee(2014). Numerical investigation of rarefaction effects in the vicinity of a sharp leading edge . AIP Conference Proceedings. 1628. (1). p. 185-191.
Pan, Shaowu, Gao, Zhenxun, Lee, Chunhian (2014). Numerical Investigation of Rarefaction Effects in the Vicinity of a Sharp Leading Edge . AIP Conference Proceedings.