Want to hire this expert for a project? Request a quote for free.
Profile Details
Create Project
USD 350 /hr
Hire Dr. Shaowu P.
United States
USD 350 /hr
Physics-Informed Machine Learning / AI, Fluid Dynamics / Data-driven modeling of dynamical systems
Profile Summary
Subject Matter Expertise
Services
Research
Scientific and Technical Research
Consulting
Scientific and Technical Consulting
Data & AI
Predictive Modeling,
Statistical Analysis
Product Development
Formulation
Work Experience
Assistant Professor
Rensselaer Polytechnic Institute
August 2022 - Present ![]()
Postdoc
University of Washington
January 2021 - August 2022 ![]()
Graduate Student Research Assistant
University of Michigan
August 2016 - December 2020 ![]()
Application engineer intern
Exa Corporation
January 2016 - July 2016 ![]()
Education
Ph.D. (Aerospace Engineering)
University of Michigan
September 2016 - April 2021 ![]()
M.S.E. (Mechanical Engineering)
University of Michigan
- December 2015 ![]()
B.E. (School of Aeronautics and Astronautics)
Beihang University
September 2009 - June 2013 ![]()
B.S. (School of Mathematics)
Beihang University
August 2010 - April 2013 ![]()
Certifications
Publications
JOURNAL ARTICLE
Shaowu Pan, Shahriar Akbar Sakib (2025). Learning Noise-Robust Stable Koopman Operator for Control With Hankel DMD . IEEE Transactions on Control Systems Technology.
Shaowu Pan, Karthik Duraisamy (2024). On the lifting and reconstruction of nonlinear systems with multiple invariant sets . Nonlinear Dynamics.
Shaowu Pan, Byoungchan Jang, Alan A. Kaptanoglu, Rahul Gaur, Matt Landreman, William Dorland (2024). Erratum: “Grad–Shafranov equilibria via data-free physics informed neural networks” [Phys. Plasmas 31, 032510 (2024)] . Physics of Plasmas.
Shaowu Pan, Byoungchan Jang, Alan A. Kaptanoglu, Rahul Gaur, Matt Landreman, William Dorland (2024). Grad–Shafranov equilibria via data-free physics informed neural networks . Physics of Plasmas.
Shaowu Pan, Eurika Kaiser, Brian M. de Silva, J. Nathan Kutz, Steven L. Brunton (2024). PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator . Journal of Open Source Software.
Shaowu Pan, Steven L. Brunton, J. Nathan Kutz(2023). Neural Implicit Flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data . Journal of Machine Learning Research. 24. (41). p. 1--60.
Gao, Q., Pan, S., Wang, H., Wei, R., Wang, J.(2022). Correction: Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning (Advances in Aerodynamics, (2021), 3, 1, (28), 10.1186/s42774-021-00087-6) . Advances in Aerodynamics. 4. (1).
Shaowu Pan, Qi Gao, Hongping Wang, Runjie Wei, Jinjun Wang (2021). Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning . Advances in Aerodynamics.
Shaowu Pan, Nicholas Arnold-Medabalimi, Karthik Duraisamy(2021). Sparsity-promoting algorithms for the discovery of informative Koopman-invariant subspaces . Journal of Fluid Mechanics. 917. Cambridge University Press ({CUP})
Pan, S., Arnold-Medabalimi, N., Duraisamy, K.(2021). Sparsity-promoting algorithms for the discovery of informative Koopman-invariant subspaces . Journal of Fluid Mechanics. 917.
Pan, S., Arnold-Medabalimi, N., Duraisamy, K.(2021). Sparsity-promoting algorithms for the discovery of informative Koopman-invariant subspaces . Journal of Fluid Mechanics. 917.
Ji, W., Qiu, W., Shi, Z., Pan, S., Deng, S.(2021). Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics . Journal of Physical Chemistry A. 125. (36). p. 8098-8106.
Gao, Q., Pan, S., Wang, H., Wei, R., Wang, J.(2021). Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning . Advances in Aerodynamics. 3. (1).
Shaowu Pan, Karthik Duraisamy(2020). On the structure of time-delay embedding in linear models of non-linear dynamical systems . Chaos: An Interdisciplinary Journal of Nonlinear Science. 30. (7). p. 073135. {AIP} Publishing
Shaowu Pan, Luning Sun, Han Gao, Jian-Xun Wang(2020). Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data . Computer Methods in Applied Mechanics and Engineering. 361. p. 112732. Elsevier {BV}
Shaowu Pan, Karthik Duraisamy(2020). Physics-Informed Probabilistic Learning of Linear Embeddings of Nonlinear Dynamics with Guaranteed Stability . SIAM Journal on Applied Dynamical Systems. 19. (1). p. 480--509. Society for Industrial {\&} Applied Mathematics ({SIAM})
Pan, S., Duraisamy, K.(2020). On the structure of time-delay embedding in linear models of non-linear dynamical systems . Chaos. 30. (7).
Pan, S., Duraisamy, K.(2020). On the structure of time-delay embedding in linear models of non-linear dynamical systems . Chaos. 30. (7).
Sun, L., Gao, H., Pan, S., Wang, J.-X.(2020). Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data . Computer Methods in Applied Mechanics and Engineering. 361.
Pan, S., Duraisamy, K.(2020). Physics-informed probabilistic learning of linear embeddings of nonlinear dynamics with guaranteed stability . SIAM Journal on Applied Dynamical Systems. 19. (1). p. 480-509.
Pan, Shaowu, Bhatnagar, Saakaar, Afshar, Yaser, Duraisamy, Karthik, Kaushik, Shailendra (2019). Prediction of aerodynamic flow fields using convolutional neural networks . Computational Mechanics.
Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., Kaushik, S.(2019). Prediction of aerodynamic flow fields using convolutional neural networks . Computational Mechanics. 64. (2). p. 525-545.
Shaowu Pan, Karthik Duraisamy (2018). Long-Time Predictive Modeling of Nonlinear Dynamical Systems Using Neural Networks . Complexity.
Shaowu Pan, Karthik Duraisamy(2018). Data-Driven Discovery of Closure Models . SIAM Journal on Applied Dynamical Systems. 17. (4). p. 2381--2413. Society for Industrial {\&} Applied Mathematics ({SIAM})
Shaowu Pan, Karthik Duraisamy(2018). Data-Driven Discovery of Closure Models . SIAM Journal on Applied Dynamical Systems. 17. (4). p. 2381--2413. Society for Industrial {\&} Applied Mathematics ({SIAM})
Shaowu Pan, Karthik Duraisamy, Francisco Chinesta (2018). Long‐Time Predictive Modeling of Nonlinear Dynamical Systems Using Neural Networks . Complexity.
Pan, Shaowu, Duraisamy, Karthik (2018). Long-Time Predictive Modeling of Nonlinear Dynamical Systems Using Neural Networks . Complexity.
Pan, S., Duraisamy, K.(2018). Long-time predictive modeling of nonlinear dynamical systems using neural networks . Complexity. 2018.
Pan, Shaowu, Duraisamy, Karthik (2018). Data-Driven Discovery of Closure Models . SIAM Journal on Applied Dynamical Systems.
Pan, S., Duraisamy, K.(2018). Data-driven discovery of closure models . SIAM Journal on Applied Dynamical Systems. 17. (4). p. 2381-2413.
Shaowu Pan, Eric Johnsen(2017). The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence . Journal of Fluid Mechanics. 833. p. 717--744. Cambridge University Press ({CUP})
Pan, Shaowu, Johnsen, Eric (2017). The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence . Journal of Fluid Mechanics.
Pan, S., Johnsen, E.(2017). The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence . Journal of Fluid Mechanics. 833. p. 717-744.
Shaowu Pan, Zhenxun Gao, Chongwen Jiang, Chun-Hian Lee(2015). Combustion Heat-Release Effects on Supersonic Compressible Turbulent Boundary Layers . AIAA Journal. 53. (7). p. 1949--1968. American Institute of Aeronautics and Astronautics ({AIAA})
Pan, Shaowu, Gao, Zhenxun, Jiang, Chongwen, Lee, Chun-Hian (2015). Combustion Heat-Release Effects on Supersonic Compressible Turbulent Boundary Layers . AIAA Journal.
Gao, Z., Jiang, C., Pan, S., Lee, C.-H.(2015). Combustion heat-release effects on supersonic compressible turbulent boundary layers . AIAA Journal. 53. (7). p. 1949-1968.
OTHER
Duvall, J., Duraisamy, K., Pan, S.(2021). Discretization-independent surrogate modeling over complex geometries using hypernetworks and implicit representations . arXiv.
Ji, W., Qiu, W., Shi, Z., Pan, S., Deng, S.(2020). Stiff-PINN: Physics-informed neural network for stiff chemical kinetics . arXiv.
Pan, S., Arnold-Medabalimi, N., Duraisamy, K.(2020). Sparsity-promoting algorithms for the discovery of informative Koopman-invariant subspaces . arXiv.
Sun, L., Gao, H., Pan, S., Wang, J.-X.(2019). Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data . arXiv.
Pan, S., Duraisamy, K.(2019). On the structure of time-delay embedding in linear models of non-linear dynamical systems . arXiv.
Sun, L., Gao, H., Pan, S., Wang, J.-X.(2019). Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data . arXiv.
Gao, Q., Pan, S., Wang, H., Wei, R., Wang, J.(2019). Particle reconstruction of volumetric particle image velocimetry with strategy of machine learning . arXiv.
Pan, S., Duraisamy, K.(2019). Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability . arXiv.
Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., Kaushik, S.(2019). Prediction of Aerodynamic Flow Fields Using Convolutional Neural Networks . arXiv.
Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., Kaushik, S.(2019). Prediction of Aerodynamic Flow Fields Using Convolutional Neural Networks . arXiv.
Pan, S., Duraisamy, K.(2018). Long-time predictive modeling of nonlinear dynamical systems using neural networks . arXiv.
Pan, S., Duraisamy, K.(2018). Data-driven discovery of closure models . arXiv.
CONFERENCE PAPER
Ji, W., Qiu, W., Shi, Z., Pan, S., Deng, S.(2021). Stiff-PINN: Physics-informed neural network for stiff chemical kinetics . CEUR Workshop Proceedings. 2964.
Ji, W., Qiu, W., Shi, Z., Pan, S., Deng, S.(2021). Stiff-PINN: Physics-informed neural network for stiff chemical kinetics . CEUR Workshop Proceedings. 2964.
Anand Pratap Singh, Karthikeyan Duraisamy, Ze Jia Zhang(2017). Augmentation of Turbulence Models Using Field Inversion and Machine Learning . 55th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics
Shaowu Pan, Anand Pratap Singh, Karthikeyan Duraisamy(2017). Characterizing and Improving Predictive Accuracy in Shock-Turbulent Boundary Layer Interactions Using Data-driven Models . 55th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics
Singh, A.P., Pan, S., Duraisamy, K.(2017). Characterizing and improving predictive accuracy in shock-turbulent boundary layer interactions using data-driven models . AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting.
Duraisamy, K., Singh, A.P., Pan, S.(2017). Augmentation of turbulence models using field inversion and machine learning . AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting.
Mann, A., Kim, M.-S., Pan, S., Neuhierl, B., Pérot, F., Ocampo, J.A.(2016). Towards engine-mounted exhaust and muffler aeroacoustics predictions using a lattice boltzmann based method . FISITA 2016 World Automotive Congress - Proceedings.
Shaowu Pan, Ning Zhou, Yuanhao Wu, Wenbin Han(2014). An extended CFD model to predict the pumping curve in low pressure plasma etch chamber . {AIP} Publishing {LLC}
Shaowu Pan and Zhenxun Gao and Chunhian Lee(2014). Numerical investigation of rarefaction effects in the vicinity of a sharp leading edge . AIP Conference Proceedings. 1628. (1). p. 185-191.
Pan, Shaowu, Gao, Zhenxun, Lee, Chunhian (2014). Numerical Investigation of Rarefaction Effects in the Vicinity of a Sharp Leading Edge . AIP Conference Proceedings.