Want to hire this expert for a project? Request a quote for free.
Profile Details
Create Project
USD 70 /hr
Hire Zia T.
Finland
USD 70 /hr
Senior AI scientist, statistician, software developer, bioinformatician and writer
Profile Summary
Subject Matter Expertise
Services
Writing
Non-Medical Regulatory Writing,
Technical Writing,
General Proofreading & Editing
Research
Market Research,
User Research,
Meta-Research,
Feasibility Study,
Gap Analysis,
Secondary Data Collection
Consulting
Scientific and Technical Consulting
Data & AI
Predictive Modeling,
Statistical Analysis,
Algorithm Design-Non ML,
Data Visualization,
Big Data Analytics,
Data Processing,
Data Insights
Product Development
Formulation,
Product Evaluation,
Concept Development,
Prototyping
Work Experience
University of Helsinki
- Present
Adjunct Professor
University of Helsinki
June 2015 - Present
Postdoctoral researcher (Bioinformatics projects, developed methods and tools)
University of Helsinki, Finland
February 2015 - Present
Postdoctoral researcher (Machine learning and Bioinformatics)
University of Sannio, Italy
February 2014 - February 2015
Education
Docent in Pharmaceutical chemistry
Helsingin yliopisto Computational Drug Discovery Group
2020 - October 2022
PhD
University of Helsinki, Finland
January 2009 - August 2013
MS leading to PhD (Computer science)
Pakistan Institute of Engineering and Applied Sciences
2007 - 2013
Certifications
- Certification details not provided.
Publications
JOURNAL ARTICLE
Ziaurrehman Tanoli, Adrià Fernández-Torras, Umut Onur Özcan, Aleksandr Kushnir, Kristen Michelle Nader, Yojana Gadiya, Laura Fiorenza, Aleksandr Ianevski, Markus Vähä-Koskela, Mitro Miihkinen, et al. (2025). Computational drug repurposing: approaches, evaluation of in silico resources and case studies . Nature Reviews Drug Discovery.
Ziaurrehman Tanoli, Adria Fernandez-Torras, UMUT ONUR ÖZCAN, Aleksandr Kushnir, Kristen Nader, Yojana Gadiya, Laura Fiorenza, Aleksandr Ianevski, Markus Vähä-Koskela, Mitro Miihkinen, et al.(2025). Computational drug repurposing . Nature Reviews Drug Discovery. Nature Research
Aron Schulman, Juho Rousu, Tero Aittokallio, Ziaurrehman Tanoli, Xin Gao (2024). Attention-based approach to predict drug–target interactions across seven target superfamilies . Bioinformatics.
Aleksandr Ianevski, Aleksandr Kushnir, Kristen Nader, Mitro Miihkinen, Henri Xhaard, Tero Aittokallio, Ziaurrehman Tanoli (2024). RepurposeDrugs: an interactive web-portal and predictive platform for repurposing mono- and combination therapies . Briefings in Bioinformatics.
Jehad Aldahdooh, Ziaurrehman Tanoli, Jing Tang, Yoshihiro Yamanishi (2024). Mining drug–target interactions from biomedical literature using chemical and gene descriptions-based ensemble transformer model . Bioinformatics Advances.
Ezequiel Anokian, Judith Bernett, Adrian Freeman, Markus List, Lucía Prieto Santamaría, Ziaurrehman Tanoli, Sarah Bonnin (2024). Machine Learning and Artificial Intelligence in Drug Repurposing—Challenges and Perspectives . Drug Repurposing.
Swapnil Potdar, Filipp Ianevski, Aleksandr Ianevski, Ziaurrehman Tanoli, Krister Wennerberg, Brinton Seashore-Ludlow, Olli Kallioniemi, Päivi Östling, Tero Aittokallio, Jani Saarela (2023). Breeze 2.0: an interactive web-tool for visual analysis and comparison of drug response data . Nucleic Acids Research.
Shuyu Zheng, Wenyu Wang, Jehad Aldahdooh, Alina Malyutina, Tolou Shadbahr, Ziaurrehman Tanoli, Alberto Pessia, Jing Tang (2022). SynergyFinder Plus: Toward Better Interpretation and Annotation of Drug Combination Screening Datasets . Genomics, Proteomics & Bioinformatics.
Anna Cicho{\'{n}}ska and Balaguru Ravikumar and Robert J. Allaway and Fangping Wan and Sungjoon Park and Olexandr Isayev and Shuya Li and Michael Mason and Andrew Lamb and Ziaurrehman Tanoli and Minji Jeon and Sunkyu Kim and Mariya Popova and Stephen Capuzzi and Jianyang Zeng and Kristen Dang and Gregory Koytiger and Jaewoo Kang and Carrow I. Wells and Timothy M. Willson and Mehmet Tan and Chih-Han Huang and Edward S. C. Shih and Tsai-Min Chen and Chih-Hsun Wu and Wei-Quan Fang and Jhih-Yu Chen and Ming-Jing Hwang and Xiaokang Wang and Marouen Ben Guebila and Behrouz Shamsaei and Sourav Singh and Thin Nguyen and Mostafa Karimi and Di Wu and Zhangyang Wang and Yang Shen and Hakime Öztürk and Elif Ozkirimli and Arzucan Özgür and Hansaim Lim and Lei Xie and Georgi K. Kanev and Albert J. Kooistra and Bart A. Westerman and Panagiotis Terzopoulos and Konstantinos Ntagiantas and Christos Fotis and Leonidas Alexopoulos and Dimitri Boeckaerts and Michiel Stock and Bernard De Baets and Yves Briers and Yunan Luo and Hailin Hu and Jian Peng and Tunca Dogan and Ahmet S. Rifaioglu and Heval Atas and Rengul Cetin Atalay and Volkan Atalay and Maria J. Martin and Minji Jeon and Junhyun Lee and Seongjun Yun and Bumsoo Kim and Buru Chang and G{\'{a}}bor Turu and {\'{A}}d{\'{a}}m Mis{\'{a}}k and Bence Szalai and L{\'{a}}szl{\'{o}} Hunyady and Matthias Lienhard and Paul Prasse and Ivo Bachmann and Julia Ganzlin and Gal Barel and Ralf Herwig and Davor Or{\v{s}}oli{\'{c}} and Bono Lu{\v{c}}i{\'{c}} and Vi{\v{s}}nja Stepani{\'{c}} and Tomislav {\v{S}}muc and Tudor I. Oprea and Avner Schlessinger and David H. Drewry and Gustavo Stolovitzky and Krister Wennerberg and Justin Guinney and Tero Aittokallio and and and and and and and and and and and and and and and and and and and(2021). Crowdsourced mapping of unexplored target space of kinase inhibitors . Nature Communications. 12. (1). Springer Science and Business Media {LLC}
Ziaurrehman Tanoli and Jehad Aldahdooh and Farhan Alam and Yinyin Wang and Umair Seemab and Maddalena Fratelli and Petr Pavlis and Marian Hajduch and Florence Bietrix and Philip Gribbon and Andrea Zaliani and Matthew D Hall and Min Shen and Kyle Brimacombe and Evgeny Kulesskiy and Jani Saarela and Krister Wennerberg and Markus Vähä-Koskela and Jing Tang(2021). Minimal information for chemosensitivity assays (MICHA): a next-generation pipeline to enable the FAIRification of drug screening experiments . Briefings in Bioinformatics. Oxford University Press ({OUP})
Crowdsourced mapping of unexplored target space of kinase inhibitors <head>
<META HTTP-EQUIV="Refresh" CONTENT="0;URL=/servlet/useragent">
</head> . Nature Communications.
(2021). Exploration of databases and methods supporting drug repurposing: a comprehensive survey . Briefings in bioinformatics.
(2021). Multi-modal meta-analysis of cancer cell line omics profiles identifies ECHDC1 as a novel breast tumor suppressor . Molecular systems biology.
(2021). Identification of Celecoxib-Targeted Proteins Using Label-Free Thermal Proteome Profiling on Rat Hippocampus . Molecular pharmacology.
(2021). Artificial intelligence, machine learning, and drug repurposing in cancer . Expert opinion on drug discovery.
(2019). Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen . Nature Communications.
(2019). Cartography of rhodopsin-like G protein-coupled receptors across vertebrate genomes . Scientific Reports.
(2019). DrugComb: an integrative cancer drug combination data portal . Nucleic acids research.
(2018). Interactive visual analysis of drug-target interaction networks using Drug Target Profiler, with applications to precision medicine and drug repurposing . Briefings in bioinformatics.
Zia ur Rehman, Adnan Idris, Asifullah Khan(2018). Multi-Dimensional Scaling based grouping of known complexes and intelligent protein complex detection . Computational Biology and Chemistry. 74. p. 149--156. Elsevier {BV}
Jing Tang, Zia-ur-Rehman Tanoli, Balaguru Ravikumar, Zaid Alam, Anni Rebane, Markus Vähä-Koskela, Gopal Peddinti, Arjan J. van Adrichem, Janica Wakkinen, Alok Jaiswal, et al.(2018). Drug Target Commons: A Community Effort to Build a Consensus Knowledge Base for Drug-Target Interactions . Cell Chemical Biology. 25. (2). p. 224--229.e2. Elsevier {BV}
(2018). Drug Target Commons 2.0: a community platform for systematic analysis of drug–target interaction profiles . Database.
Adnan Idris, Aksam Iftikhar, Zia ur Rehman(2017). Intelligent churn prediction for telecom using GP-AdaBoost learning and PSO undersampling . Cluster Computing. Springer Nature
Chen He, Luana Micallef, Zia-ur-Rehman Tanoli, Samuel Kaski, Tero Aittokallio, Giulio Jacucci(2017). MediSyn: uncertainty-aware visualization of multiple biomedical datasets to support drug treatment selection . BMC Bioinformatics. 18. (S10). Springer Nature
Chen He, Luana Micallef, Ziaurrehman Tanoli, Samuel Kaski, Tero Aittokallio, Giulio Jacucci(2017). MediSyn . BMC Bioinformatics. 18. BioMed Central
Zia-ur-Rehman, Asifullah Khan(2012). Identifying GPCRs and their Types with Chou's Pseudo Amino Acid Composition: An Approach from Multi-scale Energy Representation and Position Specific Scoring Matrix . Protein & Peptide Letters. 19. (8). p. 890--903. Bentham Science Publishers Ltd.
Zia-ur-Rehman, Asifullah Khan(2011). Prediction of GPCRs with Pseudo Amino Acid Composition: Employing Composite Features and Grey Incidence Degree Based Classification . Protein & Peptide Letters. 18. (9). p. 872--878. Bentham Science Publishers Ltd.
Zia ur-Rehman, Asifullah Khan(2011). G-protein-coupled receptor prediction using pseudo-amino-acid composition and multiscale energy representation of different physiochemical properties . Analytical Biochemistry. 412. (2). p. 173--182. Elsevier {BV}
OTHER
Trinh Trung Duong Nguyen, Ziaurrehman Tanoli, Saad Hassan, Umut Özcan, Jimmy Caroli, Albert Kooistra, David Gloriam, Alexander Hauser (2024). PGxDB: An interactive web-platform for pharmacogenomics research .
Cichonska A, Ravikumar B, Allaway RJ, Park S, Wan F, Isayev O, Li S, Mason M, Lamb A, Tanoli Z, et al.(2020). Crowdsourced mapping extends the target space of kinase inhibitors .
Zia-ur Rehman, Muhammad Tayyeb Mirza, Asifullah Khan, Henri Xhaard(2013). Predicting G-Protein-Coupled Receptors Families Using Different Physiochemical Properties and Pseudo Amino Acid Composition . G Protein Coupled Receptors - Modeling, Activation, Interactions and Virtual Screening. p. 61--79. Elsevier
PREPRINT
Ezequiel Anokian, Judith Bernett, Adrian Freeman, Markus List, Lucía Prieto Santamaría, Ziaurrehman Tanoli, Sarah Bonnin (2024). Machine Learning and Artificial Intelligence in drug repurposing – challenges and perspectives .
Aron Schulman, Juho Rousu, Tero Aittokallio, Ziaurrehman Tanoli (2024). Attention-based approach to predict drug-target interactions across seven target superfamilies .
Ezequiel Anokian, Judith Bernett, Adrian Freeman, Markus List, Lucía Prieto Santamaría, Ziaurrehman Tanoli, Sarah Bonnin (2024). Machine Learning and Artificial Intelligence in drug repurposing – challenges and perspectives .
Jehad Aldahdooh, Ziaurrehman Tanoli, Jing Tang (2023). Mining drug-target interactions from biomedical literature using chemical and gene descriptions-based ensemble transformer model .
Yinyin Wang, Jehad Aldahdooh, Yingying Hu, Hongbin Yang, Markus Vähä-Koskela, Jing Tang, Ziaurrehman Tanoli(2022). DrugRepo: A novel approach to repurpose a huge collection of compounds based on chemical and genomic features . Cold Spring Harbor Laboratory
Jehad Aldahdooh and Markus Vähä-Koskela and Jing Tang and Ziaurrehman Tanoli(2021). Using BERT to identify drug-target interactions from whole PubMed . []. Cold Spring Harbor Laboratory
Shuyu Zheng, Wenyu Wang, Jehad Aldahdooh, Alina Malyutina, Tolou Shadbahr, Ziaurrehman Tanoli, Alberto Pessia, Jing Tang(2021). SynergyFinder Plus: Toward Better Interpretation and Annotation of Drug Combination Screening Datasets . Cold Spring Harbor Laboratory
Anna Cichonska, Balaguru Ravikumar, Robert J Allaway, Sungjoon Park, Fangping Wan, Olexandr Isayev, Shuya Li, Michael Mason, Andrew Lamb, Ziaurrehman Tanoli, et al. (2020). Crowdsourced mapping extends the target space of kinase inhibitors .
CONFERENCE PAPER
Ziaurrehman Tanoli (2023). RepurposeDrugs: an interactive web-based database and machine learning predictor for repurposing mono- and combination therapies .
Ziaurrehman Tanoli (2023). RepurposeDrugs: an interactive web-based database and machine learning predictor for repurposing mono- and combination therapies .
Ziaurrehman Tanoli (2023). RepurposeDrugs: an interactive web-based database and machine learning predictor for repurposing mono- and combination therapies . RExPO22 Conference.
BOOK CHAPTER
Ziaurrehman Tanoli, Muhammad Tayyeb Mirza, Asifullah Khan, Henri Xhaard(2013). Predicting G-Protein-Coupled Receptors Families Using Different Physiochemical Properties and Pseudo Amino Acid Composition . G Protein coupled receptors. p. 61--79. Elsevier Academic Press