Want to hire this expert for a project? Request a quote for free.
Profile Details
Create Project
USD 50 /hr
Hire Dr. Matteo T.
United Kingdom
USD 50 /hr
Researcher with over 6+ years of experience in Machine/Deep Learning, Computer Vision and Anomaly Detection
Profile Summary
Subject Matter Expertise
Services
Writing
Technical Writing
Research
User Research,
Feasibility Study
Consulting
Scientific and Technical Consulting
Data & AI
Predictive Modeling,
Statistical Analysis,
Algorithm Design-Non ML,
Data Visualization,
Big Data Analytics,
Data Processing,
Data Insights
Product Development
Formulation,
Prototyping
Work Experience
PostdoctoralResearcher
University of Padua
October 2019 - Present
Research Consultant
University of Padua - Sinteco SPA
May 2020 - April 2021
Visiting Researcher
UCLA VisionLAB
April 2018 - September 2018
Research Fellow - Consultant
University of Padua
April 2016 - September 2016
Research Fellow
University of Padua - WearIT
May 2015 - October 2015
Education
Doctorate
University of Padua
October 2016 - October 2019
Control Engineering
University of Padua
September 2012 - December 2014
Certifications
- Certification details not provided.
Publications
JOURNAL ARTICLE
Maggipinto, M., Terzi, M., Susto, G.A.(2022). IntroVAC: Introspective Variational Classifiers for learning interpretable latent subspaces . Engineering Applications of Artificial Intelligence. 109.
Terzi, M., Susto, G.A., Chaudhari, P.(2020). Directional adversarial training for cost sensitive deep learning classification applications . Engineering Applications of Artificial Intelligence. 91.
Meneghetti, L., Terzi, M., Del Favero, S., Susto, G.A., Cobelli, C.(2020). Data-Driven Anomaly Recognition for Unsupervised Model-Free Fault Detection in Artificial Pancreas . IEEE Transactions on Control Systems Technology. 28. (1). p. 33-47.
Maggipinto, M., Terzi, M., Masiero, C., Beghi, A., Susto, G.A.(2018). A Computer Vision-Inspired Deep Learning Architecture for Virtual Metrology Modeling with 2-Dimensional Data . IEEE Transactions on Semiconductor Manufacturing. 31. (3). p. 376-384.
Susto, G.A., Terzi, M., Beghi, A.(2017). Anomaly Detection Approaches for Semiconductor Manufacturing . Procedia Manufacturing. 11. p. 2018-2024.
Cenedese, A., Minetto, L., Susto, G.A., Terzi, M.(2016). Human activity recognition with wearable devices: A symbolic approach . PsychNology Journal. 14. (2-3). p. 99-115.
OTHER
Terzi, M., Carletti, M., Susto, G.A.(2021). Improving robustness with image filtering . arXiv.
Maggipinto, M., Terzi, M., Susto, G.A.(2020). IntroVAC: Introspective variational classifiers for learning interpretable latent subspaces . arXiv.
Terzi, M., Maggipinto, M., Achille, A., Susto, G.A.(2020). Adversarial training reduces information and improves transferability . arXiv.
Carletti, M., Terzi, M., Susto, G.A.(2020). Interpretable anomaly detection with DIFFI: Depth-based isolation forest feature importance . arXiv.
Maggipinto, M., Terzi, M., Susto, G.A.(2020). β-Variational Classifiers under Attack . arXiv.
Terzi, M., Susto, G.A., Chaudhari, P.(2019). Directional adversarial training for cost sensitive deep learning classification applications . arXiv.
Libera, A.D., Terzi, M., Alessandro, R., Susto, G.A., Carli, R.(2019). Robot kinematic structure classification from time series of visual data . arXiv.
CONFERENCE PAPER
Maggipinto, M., Terzi, M., Susto, G.A.(2020). ß-variational classifiers under attack . IFAC-PapersOnLine. 53. p. 7903-7908.
Bargellesi, N., Carletti, M., Cenedese, A., Susto, G.A., Terzi, M.(2019). A Random Forest-based Approach for Hand Gesture Recognition with Wireless Wearable Motion Capture Sensors . IFAC-PapersOnLine. 52. (11). p. 128-133.
Susto, G.A., Terzi, M., Masiero, C., Pampuri, S., Schirru, A.(2019). A fraud detection decision support system via human on-line behavior characterization and machine learning . Proceedings - 2018 1st IEEE International Conference on Artificial Intelligence for Industries, AI4I 2018. p. 9-14.
Libera, A.D., Terzi, M., Rossi, A., Susto, G.A., Carli, R.(2019). Robot kinematic structure classification from time series of visual data . 2019 18th European Control Conference, ECC 2019. p. 1586-1591.
Meneghetti, L., Terzi, M., Susto, G.A., Del Favero, S., Cobelli, C.(2019). Fault Detection in Artificial Pancreas: A Model-Free approach . Proceedings of the IEEE Conference on Decision and Control. 2018-December. p. 303-308.
Terzi, M., Cenedese, A., Susto, G.A.(2017). A multivariate symbolic approach to activity recognition for wearable applications . 50115865-15870
Cenedese, A., Susto, G.A., Terzi, M.(2017). A parsimonious approach for activity recognition with wearable devices: An application to cross-country skiing . 2016 European Control Conference, ECC 2016. p. 2541-2546.
Terzi, M., Masiero, C., Beghi, A., Maggipinto, M., Susto, G.A.(2017). Deep learning for virtual metrology: Modeling with optical emission spectroscopy data . RTSI 2017 - IEEE 3rd International Forum on Research and Technologies for Society and Industry, Conference Proceedings.
BOOK CHAPTER
Susto, G.A., Cenedese, A., Terzi, M.(2018). Time-Series Classification Methods: Review and Applications to Power Systems Data . Big Data Application in Power Systems. p. 179-220.